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Abstract
Inter-domain bandwidth costs comprise a significant amount
of the operating expenditure of cloud providers. Traffic engi-
neering systems at the cloud edge must strike a fine balance
between minimizing costs and maintaining the latency ex-
pected by clients. The nature of this tradeoff is complex due
to non-linear pricing schemes prevalent in the market for
inter-domain bandwidth. We quantify this tradeoff and un-
cover several key insights from the link-utilization between
a large cloud provider and Internet service providers. Based
on these insights, we propose CASCARA, a cloud edge traffic
engineering framework to optimize inter-domain bandwidth
allocations with non-linear pricing schemes. CASCARA lever-
ages the abundance of latency-equivalent peer links on the
cloud edge to minimize costs without impacting latency sig-
nificantly. Extensive evaluation on production traffic demands
of a commercial cloud provider shows that CASCARA saves
11–50% in bandwidth costs per cloud PoP, while bounding
the increase in client latency by 3 milliseconds1.

1 Introduction

Cloud wide-area networks (WANs) play a key role in enabling
high performance applications on the Internet. The rapid rise
in traffic demands from cloud networks has led to widespread
adoption of centralized, software-defined traffic engineering
(TE) systems by Google [19] and Microsoft [17] to maximize
traffic flow within the cloud network.

In the quest to overcome BGP’s shortcomings, recent ef-
forts have focused on engineering inter-domain traffic, which
is exchanged between the cloud WAN and other networks
on the Internet [27, 33]. These systems can override BGP’s
best-path selection, to steer egress traffic to better performing
next-hops. However, this focus on performance overlooks a
crucial operating expenditure of cloud providers: the cost of
inter-domain traffic determined by complex pricing schemes.
While the prices of inter-domain bandwidth have declined
in the past decade, the decrease has been outpaced by expo-
nential growth in demand [29] from cloud networks serving
high-definition video, music and gaming content. In fact, the
inter-domain bandwidth costs incurred by the cloud provider
we analyze increased by 40% in the March 2020 billing cycle
as a consequence of the increase in demand fueled by work
from home guidelines in various parts of the world. 2

1Code and experiments at: http://cascara-network.github.io.
2We do not disclose the fraction of total cloud operation expenditure

contributed by inter-domain bandwidth costs due to confidentiality reasons.

Figure 1: Present-day and CASCARA-optimized bandwidth allo-
cation distributions for one week, across a pair of links between a
large cloud provider and tier-1 North American ISPs. Costs depend
on the 95th-percentile of the allocation distributions (vertical lines).
CASCARA-optimized allocations reduce total costs by 35% over the
present-day allocations while satisfying the same demand.

In this work, we show that recent increases in interconnec-
tion and infrastructure scale enable significant potential to re-
duce the costs of inter-domain traffic. These advances include
the deployment of several new cloud points of presence (PoP)
near clients and direct peering with an increasing fraction
of the Internet’s autonomous systems [5]. As a result, most
clients are reachable over several short and latency-equivalent
paths from the cloud provider [26]. We illustrate the cost sav-
ing potential due to latency-equivalent links with an example
in Figure 1. We plot the distributions of bandwidth allocated
over one week to links A and B, which connect a large cloud
provider to tier-1 North American ISPs. Both links are located
at inter-connection points within 30 km of each other, and
offer comparable latency due to their geographical proximity.
In this example, the bandwidth price per Mbps of Link B is
33% higher than that of Link A. Link costs are a function
of the 95th percentile of the bandwidth allocations to each
link. The present-day allocations (in blue) represent the cur-
rent bandwidth assigned to the links by the cloud provider
under study. In contrast, the CASCARA-optimized allocations
(in red) meet the same or higher demand as the present-day
allocations, while reducing total bandwidth costs by 35%.

Bandwidth allocations at the cloud edge impact both the
client latency and inter-domain bandwidth costs to the cloud
provider. At one extreme, traffic allocations may disregard the
latency impact to drive bandwidth costs to near-zero while
at the other extreme, allocations may incur very high band-
width costs by greedily assigning traffic to the lowest latency
peers. Balancing this cost-latency tradeoff is central to our
work. However, it is made challenging by industry-standard
pricing schemes that use 95th percentile of the bandwidth dis-



tribution over monthly time-periods. Complex relationships
between bandwidth allocations, costs and client latency lead
to computationally hard optimization problems.

We tackle these challenges by first analyzing the utilization
of edge links from a large commercial cloud provider. We
find that the majority of traffic from the cloud is exchanged
with transit ISPs, with outbound traffic being twice in volume
compared to inbound traffic. Thus, outbound traffic to transit
ISPs dominates the inter-domain bandwidth costs of the cloud.
Three such North American ISPs incur a majority of the total
expenditure on inter-domain bandwidth in the continent (§3).
Using these insights, we make three main contributions:
1. Quantify the opportunity of saving bandwidth cost. We
formulate cloud edge TE as an optimization with the goal
of minimizing percentile bandwidth costs. Despite the non-
convex nature of the objective, the optimization is tractable
in engineering outbound traffic to peer links with only the
small number of ISPs that contribute majority of the costs. We
show that cost-optimal allocations can save up to 65% of the
cloud provider’s inter-domain bandwidth costs, quantify-
ing the upper bound on savings (§3) and offering a significant
improvement over related approaches in [12, 20, 35].
2. Practical and cost-efficient online edge TE. Since op-
timizing percentile costs is NP-Hard [20], finding optimal
solutions can take several hours. We leverage insights from
the offline optimal solution to design an efficient, heuristic-
based online TE framework, CASCARA. CASCARA leverages
the cloud provider’s rich diversity of latency-equivalent BGP
peers to offer cheaper options to outbound traffic. Through
extensive experiments we demonstrate that CASCARA pro-
vides near-optimal cost saving in practice and can be deployed
safely and incrementally in cloud WANs (§4).
3. Flexibility to balance the cost-latency tradeoff. CAS-
CARA incorporates the latency of primary and alternate peer
paths from the cloud [4, 27] to strike a balance between band-
width cost savings and client latency. CASCARA provides the
flexibility to pick the operating point on this tradeoff and finds
allocations that bound the increase in client latency by 3 ms
while saving 11-50% of bandwidth costs per cloud PoP (§5).

Client latency requirements vary based on the types of
application traffic, e.g., software updates and large file trans-
fers are more delay tolerant than live video. In fact, majority
of all outbound traffic from the cloud provider is marked as
best-effort, making it tolerant to small changes in latency. We
conclude this study by discussing the generalizability of our
results, the implications of CASCARA on peering contracts
and bandwidth pricing models on the Internet (§6).

2 CASCARA controller overview

CASCARA’s goal is to engineer outbound traffic allocations
from the cloud edge to achieve near-optimal saving in inter-
domain bandwidth costs. It does so by providing operational
safety knobs to the operator: configurable variation in the

,63

&ORXG�
(GJH

%03�5287(
&2//(&7256

,3),;�)/2:
&2//(&7256�

3((5,1*
&2175$&76
���0%36�

&/,(17�
3(5)250$1&(�
0($685(0(17

&$6&$5$�:$1�
&21752//(5

&267�237,0,=('�
$//2&$7,21�;�W�

Figure 2: The design of CASCARA.

traffic allocations to peer links, incremental deployability and
bounded impact on client latency. Figure 2 shows the different
components of CASCARA. At the core is the CASCARA WAN
controller that allocates cost-optimized flow to outbound peer
links of the cloud network.
IPFIX Flow Collectors. We feed IP Flow Information Ex-
port (IPFIX) [31] logs to CASCARA to infer the utilization
of edge links of the cloud network in five minute intervals of
the billing cycle. These allocations to peer links are used both
for offline cost analysis (§3) and online allocation to meet
demands by CASCARA (§4 and §5).
BMP Route Collectors. We gather route announcements
made by BGP peers at points of presence (PoP) of the cloud
provider using BGP Monitoring Protocol (BMP) collectors.
These routes inform CASCARA of the choices of peer links
for outbound demand towards clients.
Peering Contracts. We feed the billing models and peering
rates for all BGP peers of the cloud provider to CASCARA.
Since peering rates remain stable over short durations of time,
we use snapshot of this information from June 2019.
Client latency measurements. CASCARA makes latency-
aware decisions limiting the impact of outbound traffic alloca-
tion on client latency. We feed CASCARA the median latency
to all clients of the cloud provider over both the primary and
alternate BGP paths at the PoPs.

Cloud providers have developed software-defined edges
for fine-grained control of outbound path selection from their
networks [27, 33]. These systems provide the infrastructure
to steer outbound traffic to desired peer paths. The CASCARA
controller allocates flow to peer links in every 5 minute inter-
val and can leverage the software-defined edge to optimize the
inter-domain bandwidth costs. We first quantify the potential
of bandwidth cost saving in a large cloud provider (§3), then
develop an efficient, online and near-optimal algorithm for
CASCARA to realize the saving potential (§4). Finally, we put
CASCARA to test with realistic client performance and route
availability constraints in §5.

3 Quantifying the Opportunity

Cloud networks occupy a central position in the Internet
ecosystem due to the large volume and variety of popular con-
tent they serve to users. To make this possible, cloud providers
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Figure 3: (a) Outbound traffic from a large cloud provider towards BGP peers of different types; majority of outbound traffic is towards
transit/access networks. (b) The distribution of inbound vs. outbound traffic volume from the cloud network. (c) Large differences in the cost
per unit bandwidth in different parts of the world e.g., the median peering cost in Asia is over 10X the median peering cost in North America.

peer with a large number of networks or Autonomous Sys-
tems (ASes) on the Internet, including transit ISPs and eyeball
networks. The cloud provider we analyze has over 7,000 BGP
peers, including transit networks, access networks, content
providers and Internet Exchange Points (IXPs). These links
span over one hundred geographical locations, collectively
carrying terabits of traffic per second. We analyze the uti-
lization and bandwidth costs incurred at the peering edge of
the commercial cloud provider using IPFIX flow records col-
lected from June 2018 to July 2019. Aggregated across all
edge links, Figure 3a shows the outbound traffic volume per
five minute interval from the cloud towards transit/access net-
works, cloud providers and enterprise networks, categorized
by CAIDA’s AS types classification [3].

3.1 Dominant contributors to bandwidth cost
A BGP peer of the cloud network charges for the traffic ex-
changed between them according to the billing model ne-
gotiated in their peering contract. There are three billing
models for inter-domain traffic prevalent on the Internet to-
day: (1) Settlement-free (2) Per-port and (3) Per-Megabit [9].
Settlement-free peers (SFP) agree to exchange traffic with
each other at no cost (e.g., between cloud providers). In per-
port peering, a peer bills another for each network port used
at their facility (e.g., connections at IXPs). Per-Megabit is
a utilization-based model where a network charges its peer
based on the utilization of the link between them over monthly
billing cycles. There can be a commit clause in this contract
i.e., regardless of the actual usage, the customer commits to
pay at least some pre-arranged amount to the provider.

Utilization-based, per-megabit billing is the industry stan-
dard for paid peer and transit ISP contracts and it is the focus
of our work. Our goal is to minimize bandwidth costs ac-
crued on peering links billed by their utilization. To translate
network utilization into the corresponding inter-domain band-
width cost, ISPs measure the average utilization of peering
links in five minute intervals in both inbound and outbound
directions. Let the edge link from peer p1 to peer p2 have
average outbound utilizations of B = {B1,B2, ..,Bn} megabits

in 5-minute intervals of a given month. Let Bout be the 95th

percentile of the outbound utilizations, B. Similarly, Bin is
the 95th percentile of average inbound utilizations of the
p1 � p2 link. The link cost for a billing cycle is given by,
B = ci · MAX{Bout ,Bin}, where ci is the peering rate negoti-
ated by p1 and p2 as part of their peering agreement. This
model of billing bandwidth, also called burstable billing, has
evolved as an industry standard on the Internet [9].

Bulk of the traffic is exchanged with Transit/Access ISPs.
The large majority of traffic at the cloud edge is outbound
to Transit/Access networks (Figure 3a). Therefore, traffic ex-
changed with transit ISPs is the main contributor to bandwidth
costs incurred by the cloud provider.

Outbound traffic is twice the inbound. For the cloud WAN,
outbound traffic volume is nearly twice the inbound (Fig-
ure 3b), highlighting that the cost computation based on link
utilizations can be simplified to ci ·Bout for clouds networks.

Links with only three ISPs contribute majority of costs.
Due to the large variance in peering rates (seen in Figure 3c)
and skewed distribution of traffic towards a few large ISPs
in the North American region of the cloud, edge links to
three large networks incur a majority of the total spend on
inter-domain bandwidth in North America.

3.2 Optimal inter-domain bandwidth costs
In this section we formalize the task of optimizing inter-
domain bandwidth costs of a cloud network. As outbound
traffic to paid peers is significantly higher than inbound (Fig-
ure 3b), we focus on engineering outbound traffic to minimize
the overall inter-domain bandwidth cost. To quantify the po-
tential cost savings, we formulate the offline version of the
problem where traffic demands are known in advance.

Let L = {l1, l2, ..lm} be the set of all edge links from the
WAN. Edge links to the same peer at different points of pres-
ence (PoP) are billed individually according to their percentile
utilization. Let a five-minute interval in the monthly billing
period be t j where j 2 {1,2, ..,n}. For instance, the month of
January has 8,928 five-minute intervals.



Decision variables. The traffic allocation scheme assigns
network flow to peering links in L, for every time slot t j, j 2
[1, ..,n]. Let xi j be the decision variable, where xi j is the flow
assigned to peering link li in time slot t j.
Objective function. The goal of our allocation scheme is to
find a traffic assignment to edge links over the entire billing
period such that the total inter-domain bandwidth cost is min-
imized. The cost incurred on peering link li is the product of
the peering rate (ci) and the 95th percentile utilization of that
link (denoted by zi). The goal is to minimize the total cost
incurred across all links in the WAN:

minimize Z =
m

Â
i=1

ci · zi

Constraints. The traffic allocations are subject to constraints
on link capacities. Since, the offline setting assumes knowl-
edge of traffic demands, the traffic scheme must allocate flow
in a way that the egress traffic demand is met in all time slots.
Formulating percentile cost as k-max. The cost function
consisting of the sum of 95th percentile utilization of links is
non-convex. Previous work has shown that optimizing per-
centile cost functions is NP-HARD [20]. We later show that
techniques from previous work are not effective in saving
bandwidth costs of edge links (§4.3). We formulate the exact
95th percentile of traffic allocations as part of the objective
function. We note that the 95th percentile of a distribution of
n numbers is the same as their k-max where k = n/20.
Key insight. The key insight of our formulation is that link
utilization during 5% of time slots do not contribute to its
95th percentile cost. This means that 5% of time in any billing
month is free regardless of the traffic it carries. We capture
this insight in the optimization formulation using binary inte-
ger variables li j for each decision variable xi j. li js are also
decision variables of the optimization which reflect whether
their corresponding xi js contribute to the link cost. This is
expressed with the indicator constraint:

(li j == 0) =) zi � xi j,8i, j (1)

We note that only 5% of all {xi1,xi2, ..,xin} can have their cor-
responding li j = 0 since we can get away with considering
5% of allocations as free. This is expressed using Big-M con-
straints in the formulation [14]. The minimization objective
ensures that of all li js, the ones corresponding to the top k�1
of the allocations (xi j) at a link do not contribute to its cost.
Implementation details. Algorithm 1 formulates the traffic
cost optimization problem as a Mixed Integer Linear Program
(MILP), which is computationally hard to solve. We imple-
ment the formulation using the CVX [8] framework and solve
it with the commercial optimization solver, GUROBI [15]
on a machine with 12 cores and 48 Gb RAM. Our choice
of solver is motivated by the computational complexity of
Algorithm 1. Commercial solvers like GNU LPK [11] and

Algorithm 1: WAN Egress Traffic Allocation
Inputs:

n: number of five-minute time slots in a month
m: number of peering links in the WAN
li: Peering link i
Ci: capacity of peering link li
ci: peering rate (USD/Mbps) for link li
d j: egress demand from the WAN in time slot t j
k = n

20
M: large integer constant

Outputs:
xi j: traffic allocation to link li in time slot t j
li j: binary variables that discount top-k xi js
zi: billable bandwidth on link li

Minimize: Âi zi · ci
subject to:

0  xi j Ci, 8i,8 j
Âi xi j = d j, 8 j
Â j li j = k�1, 8i
zi > xi j �M ·li j, 8i,8 j

CPLEX [18] were orders of magnitude slower than GUROBI
in solving our formulation.

3.3 Generalizable and large saving potential
Using the set of peering links (L), peering rates (ci), link
capacities (Ci) and real egress traffic demands (d j) from a
large commercial cloud network, we formulate instances of
Alg. 1. The egress traffic demands (d j) are collected from
June 2018 to June 2019 and consist of flow (megabits) that
traversed the BGP peering links in each 5-minute interval.
Peering rates remain constant during the course of our study.
This provides 12 instances of Alg. 1, one for each 1-month
billing period. We discuss the implementation details and
assumptions in §3.4 and offer a preview of the results here.
We compare the cost of allocations computed by Alg. 1 with
the real allocation cost incurred by the cloud provider and
find that Algorithm 1 reduces the combined cost of the three
ISPs that contribute a majority of the bandwidth cost (ISP-1,
ISP-2 and ISP-3 peer links) by 65% on average (Figure 4a).

Impact of participating links. When the input to the opti-
mization is a single peer’s links and traffic matrix, we observe
lesser, yet significant, cost savings. This can be seen in the
trends for ISP-1 and ISP-2 in Figure 4a. This shows that our
cost optimization techniques can be deployed incrementally
in the cloud WAN by engineering the traffic flow to a few ISPs
at first. The fraction of savings increase as more outbound
links are included in the optimization.

Impact of peering rates. We show the impact of relative
peering rates of the three participating ISPs in the cost op-
timization. For the optimization instances demonstrated in
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(a) Cost savings with different sets of participating links.
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(b) Impact of peering rates on cost saving.

Figure 4: (a) Cost savings for 12 billing cycles using traffic matrices of ISP-1, ISP-2, ISP-3 and their combinations. (b) Cost saving with
ISP-1, ISP-2 and ISP-3 for different peering rate ratios.

Figure 4a, the ratio of peering rates of the ISPs is 2:2:3. While
the exact peering rates are confidential, their ratio shows that
links belonging to two ISPs cost less than the third ISP. To
ensure that the cost savings are not simply a function of this
specific cost ratio, we compare the savings from the optimiza-
tion when the peering rates are in 1:1:1 and 1:1:2 ratios and
demands are the same as before. Figure 4b shows that savings
are significant (⇡ 40%) even when all links have the same
peering rate. Significant cost savings with different peering
ratios demonstrate the generality of our results.
Impact of engineered traffic volume It may not be desir-
able to allow all traffic from edge links to be engineered for
saving network costs. For instance, it may be important to
egress some portion of the traffic on the same edge link where
the client request entered the cloud for performance or geo-
political reasons. We find the impact of the fraction of traffic
that can be engineered on a per-link basis by computing the
cost gains for the month of June 2018 when the fraction of
engineered outbound traffic on the edge links of ISP-1, ISP-2
and ISP-3 is 50%. We find that the resulting cost savings are
37.5%. We note that the solution took longer than our time
limit for the solver and therefore the LP gap was higher than
15%. Similarly, when the fraction of traffic engineered on a
link is reduced to 40%, the overall cost saving is 28.6%.

3.4 Computing optimal traffic allocations
We now discuss the details of our implementation of Alg. 1.
Managing the scale of the problem. Due to the non-convex
nature of the problem, even state-of-the art optimization
solvers can take an impractical amount of time to approx-
imately solve Algorithm 1. We take advantage of our findings
from §3.1 and only engineer peer links to the three North
American ISPs (ISP-1, ISP-2 and ISP-3, anonymized for con-
fidentiality) which incur a majority of the inter-domain band-
width costs to the cloud. Each of the 3 ISPs peers with the
cloud provider at tens of locations in North America, con-
tributing 56 peer links between the cloud network and the
three ISPs. We solve Algorithm 1 for different sets of peer-
ing links: first considering links with ISP-1 and the egress
demand (d j) that gets served over links with ISP-1. Similarly,

we solve problem instances with links and demands of ISP-2,
ISP-3, ISP-1 and ISP-2 and ISP-1, ISP-2 and ISP-3 as input.

Efficient computation of the lower-bound. Cutting-edge
optimization solvers use a combination of techniques to solve
general Mixed Integer Programs (MIPs). At a high level, the
first step is relaxing the MIP to an efficiently solvable Lin-
ear Program (LP) by removing the integral constraints. If a
feasible solution to the LP is not found, the MIP, in turn, is
also infeasible. If a feasible solution is found, the solution
of the LP is a lower bound to the solution of the original
MIP. Therefore, in a minimization problem like Algorithm 1,
the LP solution provides the lower bound on bandwidth cost
without having to solve the MILP.

Running time of the optimization solver. We note that Al-
gorithm 1 has O(mn) Real decision variables and just as many
binary variables. Predicting the difficulty of Integer programs
in terms of the number of variables and constraints is hard. In-
deed, increasing the number of links (size of set L) reduces the
algorithm’s running time. The rationale behind this counter-
intuitive behavior is that higher number of peering links make
it easier for the optimization to meet demands without raising
the 95th percentile utilization of the links.

Once the LP relaxation has been solved, MIP solvers use
a branch-and-bound strategy to find feasible solutions to the
MIP from an exponential number of possibilities. As a result,
some instances of the optimization can take several hours
to solve. We use two techniques to bound the time of the
solver. First, using the efficiently computable LP relaxation,
we compute the proximity of the MIP solution to the theoreti-
cal lower bound. Second, we configure the branch-and-bound
algorithm to return the current-best feasible solution after a
fixed amount of time has elapsed. We configure the solver to
stop if the current best feasible solution to the MIP is within
15% of the LP optimal or if the solver has run for 15 hours.

Some instances of the optimization problem took 1-2 hours
to find solutions while for others, the solution space had to be
explored for 15 hours. On average, instances of Algorithm 1
took 6 hours to finish. The variance in run-time is due to
differences in traffic demands of months. One strategy that
was effective in speeding the optimization involved using



the values of decision variables from the previous month as
initial values of the corresponding decision variables for next
month’s model. We found that using this warm-start strategy
reduced the running time by 3X with instances taking 2 hours
to solve on average. We describe other approaches that did
not reduce the running time in Appendix (§A.1).
Gap from LP optimal. While the optimal solution to the
LP relaxation provides a lower bound on the minimum cost
of allocations, this lower bound is not always feasible. To
improve the run time, we set a break condition while solving
the problem instances to either reach within 15% of the LP
optimal or spend 15 hours in solving the MIP using branch-
and-bound. For the instances we solved, the average gap of
the final MIP solution from the LP optimal is 9% i.e., the
solutions are very close to the theoretical lower bound.

4 Online cost-optimization with CASCARA

Results of the offline allocation scheme (3.2) show that there
is significant potential for optimizing bandwidth cost at the
cloud edge. There are two caveats to the scheme’s use: first,
it assumes knowledge of outbound demand for every time
slot of the billing cycle. In practice, an online algorithm that
can allocate network flow to peer links without the knowl-
edge of future demands is required. Second, the optimization
formulation (Algorithm 1) takes two hours on average to pro-
vide optimal traffic allocations for the entire month. However,
state-of-the-art TE controllers compute traffic allocations ev-
ery 5-10 minutes, making it crucial to have an online solution
that is efficient and effective. In this section we develop a
heuristic-based online traffic allocation framework that uses
insights from the offline optimal solutions to Algorithm 1.
Despite the complexity of the cost optimization problem, we
show that a simple and efficient algorithm with few hyperpa-
rameters governs the closeness of the heuristic solution to the
offline optimal. The heuristic allocations achieve bandwidth
costs savings within 5% of the optimal.

Consider the set of edge links from the cloud, L =
{l1, l2, ..lm}. Let Li be a subset of L, such that links in Li
are each priced at pi per Mbps. For example, the setup in
(3.2) has two such subsets, L1 and L2 where links in L1 are
priced at p1 and those in L2 are priced at p2. Since the peering
rates of links to ISP-1, ISP-2 and ISP-3 are in the ratio 3:2:2,
p1 =

3
2 p2. From the results of Section 3.4, we derive three

key insights about the optimal traffic allocations:
Lower utilization of expensive links. When p2 < p1, the op-
timal traffic allocations use links in L1 minimally. This means
that barring capacity considerations, it is always cheaper to
use links in L2 to meet the demand and only use links in L1
for their free 5% time slots.
Maximize the utilization of free slots. Figure 5 shows the
density distribution of optimal allocations on an edge link
by Algorithm 1. We note that the optimal allocations reduce
the link’s 95th percentile utilization to ⇡ 15% of its capacity.

Figure 5: Optimized allocations on an edge link for a month. The
vertical lines show the pre- and post-optimization 95th percentile
utilization on the link. (X-axis labels removed.)

However, during 5% of time slots the link is utilized nearly at
full capacity without contributing to the billable-bandwidth.
Optimal allocation on all links show similar patterns.
Link utilization below the 95th percentile is uneconomical.
Let u j be the 95th percentile utilization of an egress link l j.
Assigning less than u j flow to link l j in any time slot is waste-
ful, i.e., the link will get billed for u j even if its utilization in
other time slots is lower (Appendix Figure 13a).

4.1 Online traffic allocation
Using insights derived from the optimal allocations, we pro-
pose an online traffic allocation scheme, CASCARA, for the
cloud edge. CASCARA pre-decides the fraction of the total
network capacity that will be the billable bandwidth for the
month (Cf ). Given the billable bandwidth, finding the opti-
mal pre-decided 95th percentile utilization of link l j (u j) is a
special case of the bin-packing problem. Thus, greedy assign-
ment of Cf to links in the increasing order of their peering
rates minimizes the total bandwidth cost of the network. Since
subsets of links (Li ⇢ L) have the same peering rate, we assign
u j to links in the same subset using the progressive filling
algorithm to ensure max-min fairness [2] within link subsets.

When a billing period begins, every link has a 95th per-
centile utilization (ui) assigned to it. As new outbound de-
mands arrive, if they can be met with Âui = Cf capacity,
CASCARA allocates corresponding flows to the links. How-
ever, if the outbound demand exceeds Cf , CASCARA chooses
to utilize one or more links at near full capacity to meet the
demand. Since 5% of billing slots do not contribute to the
links’ costs, CASCARA ensures it only runs a link at near
capacity for 5% or fewer billing time slots.
Parameters to the online algorithm. It is crucial to select
Cf such that all demands in the billing period are met within
Cf or by augmenting Cf with the extra capacity of links in
their 5% free time slots. Once a link’s 95th percentile utiliza-
tion has been chosen to be ui, using it for any lesser makes
no difference to its final cost. The choice of Cf is critical to
making a feasible allocation. If Cf is too low, the allocation
may be infeasible or if it is too high, the bandwidth cost can
be sub-optimally high. We discuss the choice of initial Cf and



how CASCARA improvises when the chosen Cf is too small
to meet the demand during the billing cycle.

Order of choosing peer links. CASCARA decides the order
of links to be augmented above their allocation ui to meet
5-minute demands higher than Cf . Using a configurable pa-
rameter, CASCARA can allocate how close the augmented
allocation is to the link’s capacity to prevent sudden link per-
formance degradation. The time slots in which CASCARA
augments the allocation to a link are called augmented slots.
The augmented slots are limited to 5% for each link, making
the order in which links are augmented relevant to the fea-
sibility of an allocation. CASCARA uses a priority queue of
all edge links where a link’s priority is a combination of the
time since it was last augmented and its capacity. If a link was
augmented in the previous slot, it must also be augmented in
the following slot, if required, so that the allocations do not
change sharply. By prioritizing links with lesser capacity for
augmentation, CASCARA ensures that free slots of links with
higher capacity are not used pre-maturely.

Link augmentation order does not impact feasibility. If
CASCARA’s assignment of uis and the order of link augmen-
tation leads to an infeasible allocation problem, any change to
the order of link augmentation does not render the allocation
feasible (Proof in Appendix A.2). Since uis are derived from
Cf , the key input parameter to CASCARA is Cf . Algorithm 2
shows the online traffic allocation scheme of CASCARA in
brief (details in Appendix Algorithm 3).

Insufficient Cf and infeasible allocation. If the initial ca-
pacity fraction assigned by CASCARA ends up being insuffi-
cient to meet the demand in a time slot, despite augmenting
the allocations to all edge links that have free slots remaining,
we consider the allocation infeasible. This means that it is no
longer possible to limit the billable bandwidth of this month to
Cf and the Cf value must be increased. CASCARA increases
the value of Cf by step size (b) to meet the demand. Until it be-
comes necessary to increase Cf in a billing cycle, CASCARA
has under-utilized the links stay under Cf . Increasing Cf to
Cf +b renders the past efforts to keep Cf low, futile. Indeed
these efforts may have wasted the augmentation slots of links
before Cf is incremented. However, there is no choice but to
increase Cf as traffic demands must always be met. In the
ideal case, initial value of Cf is just enough to meet demands
in the entire billing period using augmentation slots when
needed. On the other hand, starting the billing cycle with a
Cf that is higher than required leads to sub-optimally high
bandwidth costs. We show that the ideal Cf value is sufficient
in ensuring that CASCARA finds optimal cost allocations.

Improvising billable bandwidth preemptively. When
CASCARA finds that the demand is too high to accommo-
date in the current Cf , it increases Cf by b. Increasing the
billable bandwidth estimate, Cf is a tradeoff – increasing too
late in the billing cycle leads to wasteful use of links’ free
slots until the increase and increasing it too early reduces the

Algorithm 2: Online Traffic Allocation Per-Timestep
Function allocate_timestep(d, f):

if d Cf then
allocate Cf to links in L
return true

else
d = d �Cf
while linkqueue do

l = pop(linkqueue)
augment l
decrement l’s priority and free slots
decrement d by l’s augmented capacity
if d  0 then

return true
return false

cost saving potential. We capture this tradeoff by introduc-
ing the third and final parameter of CASCARA: a. a is the
increase in Cf during the monthly billing cycle before an in-
feasible allocation is encountered. The goal is to preemptively
increase Cf if such an increase is inevitable later in the month.

4.2 Finding CASCARA’s hyperparameters
We show that by setting Cf effectively, CASCARA’s online
traffic allocation (Algorithm 2) can be nearly as effective as
the offline solutions of Algorithm 1. We set Cf to different
fractions of the total network capacity, ranging from 0 to 1, in
steps of 0.01. We compare the cost saving from the feasible
allocation using the smallest Cf with the optimal cost saving3

and find that on average, CASCARA with the optimal initial Cf
achieves savings within 2% of the offline optimal allocation.
Setting Cf . CASCARA with the optimal Cf is called CAS-
CARA-offline since it has prior knowledge of the lowest Cf
for feasible allocations. CASCARA-online assumes no such
knowledge and uses the optimal Cf of the previous billing
cycle as the current month’s initial Cf . This choice is moti-
vated by strong daily, weekly and monthly seasonality in the
outbound traffic demands. Previous month’s Cf is the optimal
value for the next month 64% of the time. For the rest, the
average difference between optimal Cf and its initial setting
is of the network capacity. When the initial Cf is not opti-
mal, the allocation becomes infeasible and CASCARA has to
increase the Cf to meet the traffic demands.
Finding a and b with grid search. Increase in Cf is a defi-
nite increase in the bandwidth cost for the billing cycle. The
step size by with Cf is increased (b) is also important: too
high and it would wastefully increase the cost, too low and it
would mean having to increase Cf again in the future. Once
increased, there is no cost saving advantage to reducing Cf .
Incrementing Cf later is worse than having started with the

3For confidentiality reasons, we cannot not share the capacity fractions.
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Figure 6: Costs savings from CASCARA and related approaches.
Bars show the mean and wiskers show the standard deviation.

optimal Cf since links’ augmentation slots are wasted before
the increment is made. Thus, preemptively increasing Cf by
a during the billing cycle mitigates the issue of wasteful use
of link augmentation slots. The hyperparameters, a and b are
important to select. We perform a grid search to find the ones
best suited for the cloud network. Details of the grid search
are in Appendix A.5. The best values of a and b are used to
for the following discussion.

4.3 Comparison with previous work
We now discuss the cost savings enabled by CASCARA-online
over twelve billing months from June 2018 to June 2019 (Fig-
ure 6). As before, we use the production network’s traffic de-
mands, topology and peering rates to measure the cost savings
that CASCARA-online would provide. We first show that CAS-
CARA-online achieves 55% cost saving, within 10% of the
savings from CASCARA-offline which knows the optimal Cf
in advance. Then, we evaluate existing approaches that have
focused on similar objective functions as CASCARA. We ex-
clude approaches that delay traffic to future time slots [13,21]
as these are not viable for the cloud provider we study (§7).
The three main systems from related work are:
Pretium for dynamic file transfers in the WAN [20].
Pretium focuses on optimizing percentile costs of internal
WAN links for dynamic transfers within the WAN [20]. They
proposed to use the average of top 10% utilizations as a proxy
for 95th percentile cost of links. We find that Pretium offers
modest cost saving of 11% on average compared to CAS-
CARA’s 55% savings for egress WAN traffic. Pretium assumes
that the 95th percentile of a link’s utilization is linearly corre-
lated with the average of top k utilizations [20]. We evaluate
this assumption using the utilizations of over 50 peering links
from the cloud WAN to large ISPs in N. America. Figure 13b
shows the Pearson correlation coefficient to measure the ex-
tent to which the average of top 10% utilizations can be used
as a proxy for 95th percentile utilization of inter-domain links.
We find that the correlation coefficient for over 25% of the
links is less than 0.5. Since previous work’s hypothesis was
derived from the data of a single WAN link measured a few
years ago, the correlation between average of top 10% and
95th percentile utilization may exist for some links but not
all. Ever-changing traffic patterns from WANs due to new
services like gaming also explain this difference.
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Figure 7: The impact of ramp-up rate on cost saving potential (mean
and std. deviation calculated over 12 billing cycles).

Entact for cost minimization in clouds [35]. Entact shares
a lot of the goals with CASCARA, including finding cost opti-
mal traffic allocations constrained by client latency. However,
Entact chose to optimize linear bandwidth prices since per-
centile pricing is hard to optimize [35]. In a linear pricing
scheme, greedy traffic allocation to cheapest links is optimal.
However, the greedy algorithm does not fare well in percentile
pricing schemes, as show in Figure 6’s comparison between
CASCARA and Entact. The reason is that allocations in every
time slot contribute towards the billable bandwidth in linear
pricing schemes (e.g., average and sum of allocations) but in
percentile pricing, some percent of the allocations are free.
Greedy allocations fail to take advantage of this phenomenon.
Global Fractional Allocation (GFA) for multihoming [12].
Finally, authors of [12] analyzed cost optimizations in the
setting of multi-homed users. GFA comes closest in its ap-
proach to CASCARA and this is also reflected in the cost
saving comparison in Figure 6. However, CASCARA outper-
forms GFA by 17% in the average case. There are two main
reasons for this: GFA assumes a much smaller scale of the
problem where the options for allocations are 3 to 4 upstream
ISPs. This makes their naive estimation of cost lower bound
ineffective: by using only 5% of the timeslots of peer links to
meet demands was a viable option, traffic allocation would be
free. Secondly, when GFA runs into an infeasible allocation,
it assigns all remaining flow to a single link. This is often
impractical at the cloud scale where the demand is too high
for one peer link to handle the slack.

And finally, there are several realistic factors that need
careful consideration: latency from peer links to clients and
existence of routes at the peering router to engineer traffic.
CASCARA not only performs better in idealized environments
by achieving higher cost saving that existing systems, it also
takes real-world constraints of a large production WAN into
account. We describe these in further details in §5.

4.4 Operational safety checks in CASCARA

We discuss the safety checks built into the CASCARA algo-
rithm to ease the process of operating it in production.
Stable traffic allocation. One concern with algorithms as-
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Figure 8: shows distributions of percent cost saving by CASCARA-offline, CASCARA-online and the oracle (Algorithm 1) over 12 billing
cycles. CASCARA-online achieves near-optimal saving with different sets of links and corresponding demands as input.

signing traffic flows on peer links is that the allocation must
be mindful of the performance impact on the inter-domain
paths. CASCARA ensures that allocation to backup BGP paths
does not change too rapidly by using a maximum ramp-up
rate parameter that controls the maximum increase in the al-
location to any peer link in the network. This ramp-up rate
paces traffic allocation to links and allows CASCARA to incor-
porate path performance feedback into its decision making.
We discuss how CASCARA incorporates performance metrics
in its control loop in the next section. Figure 7 shows the cost
saving potential of CASCARA as a function of the ramp-up
rate. Very slow shifts which use a maximum ramp-up rate of
10 Gbps restrict the cost savings of CASCARA. However, at
30 Gbps ramp-up rate, CASCARA has reached its full saving
potential and more rapid shifts of traffic do not offer much
improvement in cost savings percentage.

Predictable traffic allocations on edge links. CASCARA’s
traffic allocation to edge links are more stable than present-
day allocations which are driven by user-facing demands.
There are two reasons for this. First, CASCARA selects a pre-
decided fraction of a link’s capacity as the utilization on the
link for 95% of billing slots and changes are made to this
fraction only when it is essential for meeting demand over
Cf . Secondly, even when the allocation to a link has to be
augmented, CASCARA ensures that a link, once augmented,
is used until its free slots have been exhausted. Predictable
allocations on edge links allow network peers to provision
capacity appropriately in place of being prepared for arbitrary
spikes in traffic demands.

Incremental deployability. CASCARA can be incrementally
deployed across edge link groups in the cloud. To show this,
we divide the peer links of ISP-1, ISP-2 and ISP-3 into four
geographical clusters based on their PoP. These four clusters
correspond to links at PoPs in north-central, south-central,
East Coast and West Coast regions of North America. We
compute the cost savings within each cluster by engineering
the demands of the cluster onto its links. Figure 8 shows that
CASCARA-online can achieve near-optimal cost (CASCARA-
offline) savings across all peer links (cluster all) and also
within the 4 geographical clusters. We note that in some cases
CASCARA-offline achieves higher cost saving than the oracle
(Alg. 1) due to the LP gap in the solution of the MILP (§3.4).
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Figure 9: shows the distribution of address space similarity between
peer links of ISP-1, ISP-2 and ISP-3 at different PoPs of the cloud.
Each ISP announces nearly the same address space at different PoPs
but the overlap in address space across ISPs is very small.

5 Performance-aware cost saving

We have demonstrated that there is significant potential of
saving inter-domain bandwidth costs in a cloud network (§3)
and CASCARA’s efficient online algorithm can realize this
potential by achieving near-optimal cost saving (§4). In this
section we discuss practical aspects of achieving cost savings,
namely, feasibility of engineering egress traffic in a WAN and
the impact of CASCARA on client latency.

5.1 Availability of client routes at peer links
CASCARA engineers outbound traffic demand to peer links
to achieve cost optimality over the billing cycle. However, it
must ensure that peer links have the routes required for traffic
shifted onto them. Otherwise, traffic to clients could get black-
holed at the peering edge router. Using the routes announced
by the three ISPs we focus on, we measure the address space
overlap between peer links and find that ISPs announce the
same address space across different peering locations (e.g.,
Dallas vs. Seattle) but the overlap of address space across
peers (e.g., ISP-1 vs. ISP-2), even at the same PoP is minimal
(Figure 9). Thus, CASCARA needs a mechanism to track the
existence of relevant routes at peer links.

Tracking prefix route announcements by ISPs at differ-
ent cloud PoPs in CASCARA leads to an explosion of the
problem size since there are over 600,000 prefixes on the In-
ternet. Aggregating clients to their corresponding geographic
metropolitan area (metro) and autonomous system (AS) pair



Figure 10: The difference in median latencies between primary
and alternate BGP paths calculated from client measurements. The
difference between latencies of primary and alternate paths is small.

significantly reduces the scale of the problem. This grouping
of client prefixes within the same AS and small geographi-
cal locality has been used effectively in previous work [4].
We find that the points of presence where the cloud provider
peers with ISP-1, ISP-2 and ISP-3 serve approximately 40,000
(metro, AS) pairs, reducing the scale of the mapping required
to capture the existence of relevant BGP routes at peer links.
Thus, we construct a bi-partite mapping between clients and
peer links i.e., an edge between client c to peer link p implies
p has the relevant routes to c. We then constrain the traffic
allocation in each timestep by the client to peer link mapping.
We compute this allocation efficiently with a linear program
(LP) within Alg. 2 that maps clients demands to peer links.

5.2 Bounded impact on client performance
Next, we tackle the challenge of limiting the performance
impact of CASCARA’s cost optimization. For this, we continu-
ously measure the performance of alternate BGP egress paths
to destination prefixes by directing a small amount of traffic
over alternate peer links at eight PoPs [26,27,35]. We selected
these PoPs as they carry high traffic volume – approximately
47% of all the cloud provider’s North American traffic, and
have high capacity alternate links.

Links at the same PoP have equivalent client latency. We
analyze over 300 million measurements to the cloud PoPs for
the month of August 2020, spanning 40,000 client metro and
AS pairs, each with thousands of latency measurements to-
wards the cloud on any given day. We first show the existence
of latency equivalent peer links at the same PoP. Borrowing
from existing methodology [26], we measure the difference
in median latency between the BGP best path (primary) and
the alternate BGP path for all clients that are served by the
PoPs over 15 minute time buckets. Figure 10 shows that 80%
of the time the difference in the latency is less than 3 ms. This
implies that shifting client traffic to links at the same PoP,
impacts the client latency by 3 ms or less.

Shifting traffic to peer links at a PoP different than the
one where it ingressed introduces two challenges. First, it
can inflate latency as the traffic would traverse the cloud
backbone to reach the second PoP. The second PoP could be

further from the client than the original, also inflating PoP
to client latency. Second, traversal of the cloud backbone
can congest backbone links but cloud providers often over-
provision backbone capacity [6] and manage intra-WAN link
utilizations with centralized controllers like SWAN [17] and
B4 [19] to mitigate hot spots. Thus, we focus on the latency
impact of CASCARA in this work. We find the primary PoP
and peer ISP which historically has been the preferred egress
for a client. This primary link defines the baseline for our
experiments – any changes in client latency are measured in
comparison with the primary peer and PoP.

Bound the latency impact in egress link selection. To limit
the degradation to client latency, we inform CASCARA’s allo-
cation (Algorithm 2) of the most recent latency from a peer
link to the client. In every timestep, while fulfilling demands
to a client, CASCARA enforces that traffic is allocated along
the primary and other sets of links. We select the set of links to
empirically construct the relationship between latency impact
and saving of CASCARA. We consider the set of links for each
client to include ISPs with route towards the client – includ-
ing a transit ISP, at the client’s primary PoP. This means that
along with the links to its primary ISP, the client’s demand
could be carried over the transit ISP link at the same PoP. This
can increase the set of outbound link options for a client by
two links in the best case. Since, links at the same PoP have
equivalent latency, this configuration of CASCARA does not
cause significant latency degradation (Figure 10).

We use CASCARA to engineer traffic at each PoP and com-
pute the offline cost optimal solutions (Figure 11) for com-
parison. At some PoPs (PoPs 0, 2 and 13), there are up to
five latency-equivalent peer links to most clients. e.g., two
interconnections with ISP-1, one with ISP-2 and two with the
transit ISP. CASCARA-offline shows the potential to save up
to 50% of bandwidth costs at such PoPs. At other PoPs (PoPs
4, 5, 11), there are only 2 latency-equivalent peer links to most
clients e.g., one interconnection with ISP-1 and one with the
transit ISP. Moreover, high diversity in demands across PoPs
due to client population density leads to differing opportuni-
ties of cost savings across PoPs. We use CASCARA-online to
engineer traffic in an online manner with route and latency
constraints. In each five minute timeslot, CASCARA allocated
traffic to clients on latency equivalent links at the client’s
primary PoP. On average, each iteration of CASCARA takes
approximately 3 seconds to compute traffic allocations, in-
cluding the construction of the LP and extraction of traffic
allocations on links. We note that our implementation uses
Python 2.7 and could be further optimized for running time.
However, TE systems typically perform allocations once ev-
ery 5-10 minutes, thus CASCARA’s runtime of 3 seconds is
reasonable. Across all PoPs, CASCARA achieves the overall
cost saving of 21% while ensuring that client latency remains
unaffected. The per-PoP configuration we have evaluated
enforces the strictest possible latency bound on CASCARA.
CASCARA allows cloud providers to configure the acceptable



Figure 11: shows cost savings with CASCARA when engineering
traffic on a per-PoP basis while limiting the impact on client latency
to 3 ms in the worst case (mean and standard deviation computed
over three runs of CASCARA).

worst-case latency degradation while saving bandwidth costs.

6 Discussion

In this section, we investigate the source of CASCARA’s cost
savings. We discuss implications of our findings on peering
contracts with ISPs and bandwidth pricing on the Internet.

6.1 Where do the cost savings come from?
Network operators have historically used heuristics to limit
their bandwidth costs. These include, load balancing traffic
over equivalent links and preferring cheaper peer links in the
BGP best path selection by setting localpref appropriately.
Localpref based cost saving is sub-optimal. We illustrate
the cost savings from CASCARA with a small example using
2 links and 3 billing slots. There are two egress links from
a network (Link 1 and Link 2), each of capacity 5 traffic
units and unit peering rate. The traffic demand is assigned
to Link 1 and 2 in any time slot (Figure 12). Traffic must
not be dropped if there is enough capacity on the outbound
links. For simplicity, the links are billed using the median
(50th percentile) utilization over three time slots. Since the
peering rate of both links is the same, localpref-based cost
minimization will simply balance traffic on the two links.
Under this scheme, the link utilizations are : 1,2.5,1.5 in
time slots 1, 2 and 3 respectively (shown in red in Figure 12)
for both links. The median utilization is 1.5 for both, the total
cost of the links is 3 units. An alternate traffic assignment to
the links is shown in blue in Figure 12, where the utilizations
of link 1 and 2 are {1, 5, 0} and {1, 0, 3} respectively. The
median cost in this case is 1 for both links, total cost being
2 units. This scheme saves one third of the traffic cost while
meeting the same demand. We note that by extension, sending
all traffic to a link that is cheaper would also be sub-optimal.
Free time slots for saving cost. The example shows that
in case of median billing, one of the three time slots does
not contribute towards the final cost of the link. Each link
has one free slot that can absorb peaks in demands to reduce
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Figure 12: A toy example comparing CASCARA’s cost-optimized
allocations vs. load-balanced allocations.

costs. Similarly, bandwidth on the Internet is billed using 95th

percentile billing, meaning that 5% of 5-minute time slots in
a month are free for each link. This implies that for roughly
36 hours in a month, traffic allocation on any link does not
contribute to the final billed cost. While it may seem that the
free slots provide little wriggle room for saving cost, cloud
providers have a rich diversity of network peers in several
PoPs. These peer links provide free slots in the billing context
and enable multiple latency-equivalent ways to reach clients.

6.2 Do the findings generalize?
We believe our results generalize to any large global cloud,
content provider, or content delivery network. The first rea-
son is that the cloud provider network is not unique. These
networks all share several critical properties in common with
each other: (1) presence in hundreds of PoPs around the world
to deliver traffic very close to users and (2) extensive peering
and short AS paths [5, 32]. The second reason is that other
large networks have shown that given such large deployments
and peering, many of the alternate paths to users have simi-
lar latency [1, 26]; also allowing these networks to optimize
bandwidth costs with stable performance.

Cost optimization is not a one-time effort. Traffic pat-
terns across billing slots change – demands have been rising
steadily at 30-40% per year. The surge in demand [7] from
the COVID-19 pandemic has made traffic patterns more dy-
namic. We have evaluated CASCARA using over a year worth
of demands, including evaluation in August 2020 to capture
the post-pandemic traffic growth. Our findings show small
month-to-month variation in saving but overall, the savings
are significant and consistent. We note that cost savings com-
pound over time as demand continues to rise exponentially.

6.3 How practical is CASCARA?
While CASCARA benefits from large sets of latency-
equivalent peer links, it can be deployed incrementally over
peer links (§5), allowing cloud operators to choose to expand
CASCARA’s purview over time. CASCARA can bound the
amount by which allocations to links can change across time
slots to prevent sudden changes in traffic (§4.4). Moreover,
we foresee CASCARA as a component of a larger software-
defined edge [27, 33] that already prioritizes successful traffic



delivery based on the capacity and availability of the down-
stream path. During demand surges or outages, the high prior-
ity components of the TE system may take action to mitigate
customer impact, putting CASCARA on hold for some types of
traffic for short periods of time. Automated network build-out
alerts limit the duration of persistent capacity crunches, en-
abling cost savings from CASCARA in the long term. Where
cost-optimization falls among second-order priorities will
vary across cloud providers and their business needs.

6.4 Implications for existing peering contracts
An important concern in optimizing the cost of inter-domain
traffic is the long-term impact it may have on peering con-
tracts. For instance, if free peers observe higher traffic volume
from the cloud, they may reconsider their peering agreement
or lean towards paid exchange of traffic [22]. Due to these
factors, we evaluated CASCARA only on links with paid North
American peers. We argue that the peering rate captures the
value of the interconnection to both networks involved and
thus optimizing the outbound allocations for cost, not ex-
ceeding the peering port capacity at the edge, is a reasonable
strategy. Additionally, peering rates in certain regions of the
world are disproportionately high due to monopolistic transit
ISPs and complicated socio-political factors, making high
bandwidth rates the cost of operating in the market.

6.5 Implications for bandwidth pricing
CASCARA shows that the abundance of latency-equivalent
peer links has enabled networks to significantly reduce their
expenditure on inter-domain bandwidth. With the findings of
CASCARA, we encourage the community to revisit the classic
problem of pricing inter-domain traffic effectively. A sub-
ject studied since the dawn of the Internet [24], inter-domain
bandwidth pricing models and rates determine paths taken
by traffic and subsequently the end-user performance. With
the emergence of cloud and content providers as the source
of disproportionately large volume of Internet traffic, current
pricing models may not suffice in ensuring the harmonious ex-
istence of networks on the Internet [10, 30]. Today, a handful
of networks (cloud and content providers) can take advan-
tage of their rich connectivity to save inter-domain bandwidth
costs, potentially taking a portion from the profits of ISPs.
Some recent proposals suggest ways to better align the cost of
Internet transit and the revenue gained by networks [16, 34].

7 Related Work

In this section, we discuss important pieces of work related to
CASCARA and set them in the context of our contributions.
Intra-WAN traffic engineering. Large cloud providers have
embraced software-defined, centralized traffic engineering
controllers to assign flow within their private WAN to maxi-
mize their utilization, guarantee fairness and prevent conges-
tion [17,19,23]. Bandwidth costs in the context of WANs were

considered in Pretium [20] (comparison with CASCARA in
Section 3.4). Stanojevic et al. used Shapley values to quantify
the value of individual flows under percentile pricing [28].
Engineering the WAN egress. Recent work has proposed a
software-defined edge to manage outbound flows from their
networks [27, 33]. The goal of these efforts has been to react
to poor client performance by switching to better perform-
ing BGP next hops. The allocation decisions made by CAS-
CARA can be implemented using a software defined edge like
Espresso or EdgeFabric. The subject of TE in multi-hoped net-
works has been studied [12, 25] and we compare CASCARA
with a representative set of work from this space (§3.4).
Engineering delay tolerant traffic. Previous work has ex-
plored the potential of delaying traffic across timeslots to save
bandwidth costs at the end of the billing cycle [21]. However,
the cloud provider we analyze does not consider delaying
client traffic by several minutes as a viable option.
Performance-based routing on the Internet. Google’s
Espresso [33] implements performance-based routing on the
Internet to improve client performance. Recently, other large
global networks have shown limited potential in optimizing
latency by routing [1, 26]. Our work effectively exploits this
realization by optimizing cost while keeping latency stable.
Bandwidth pricing schemes. In the early years of the Inter-
net, economists studied potential mechanisms to price band-
width [24]. Congestion pricing was proposed to bill based on
the use of network resources at times when they are scarce.
These pricing schemes incentivize users to reduce consump-
tion of network resources during peak utilization by pricing
bandwidth higher when the network is congested.

8 Conclusion

In this work, we quantify the potential of saving inter-domain
bandwidth costs in a large commercial cloud provider and find
that optimal allocations can save up to 60% of current inter-
domain bandwidth costs while meeting all traffic demands as
they arrive. Inspired by this, we develop an efficient online
TE framework, CASCARA, that achieves cost savings within
10% of the optimal. CASCARA’s cost savings are robust to
changes in traffic patterns and peering rates. Finally, we show
that CASCARA can balance the cost-performance tradeoff
by achieving 11-50% cost savings per cloud PoP without
degrading client latency significantly.
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A Appendix

A.1 Speeding the MIP solution
In this section we briefly describe the intuitive but ineffective
methods we employed to speed the execution of the MILP.
The methods did not yield a reduction in running time but we
document these for completeness.

Solving the MILP in smaller time slices. Since link utiliza-
tions at the edge exhibit strong daily and weekly seasonality,
we hypothesized that solving the cost optimization in smaller
chunks of time, say, one week at a time, and then stitching
together the resulting solutions would find the entire month’s
optimal allocations. While the smaller problems of weekly
allocations could be solved in approximately ten minutes,
when stitched together, the overall solution is very far from
optimal. In fact, the allocations obtained via this process did
not show any significant reduction in inter-domain bandwidth
cost over the present-day traffic allocations. On investigating
the reason why this approach does not work, we found that
while there are regular trends in the traffic demand, bursts of
traffic are not spread uniformly across all weeks of a month.
Accommodating these bursts with a local, week-long view
leads to overall poor cost saving from the stitched allocations.

Automated parameter tuning. The commercial solver we
used (Gurobi), provides a tool for automatically tuning the
parameters of the solver for a given optimization model. We
attempted to use this tool to find parameters which gave the
best performance in terms of running time and closeness to
the optimal. However, our model was too large for the auto-
tune to deliver any results. Thus, we selected the appropriate
parameter values manually by several runs of the optimization.
These parameters are documented in the code repository we
have released.

A.2 CASCARA’s link augmentation order
We show that changing the order of links that CASCARA aug-
ments during the billing cycle does not make an unfeasible



allocation, feasible. We take the example of an unfeasible or-
dering, Oun f easible where the demand in timeslot k cannot be
met even after augmenting the capacity of all links. Consider
the following change in the position of link li in the ordering:
if li is picked for augmenting in timestamp k in place of times-
tamp j where j  k. If this were possible, then CAPACITY(li)
would be available for use in timestamp k. However, this is
not possible since li had to be the smallest capacity link that
met the excess demand of timeslot j, any other link that takes
its place has to have a higher capacity. This means that by us-
ing another link in place of li, we would reduce the available
capacity in timeslot k. Thus, a change in ordering of links for
augmentation would not make a problem instance feasible.

A.3 Traffic allocation with CASCARA

In this section we discuss details of the CASCARA allocation
algorithm which were omitted in Section 4 for brevity. The
complete algorithm, Algorithm 3, expands on Algorithm 2. L
is the set of links in the network in the increasing order of thei
peering rate. The algorithm shows how CASCARA allocates
flow to links in every timestamp of the billing period. The
solution to this algorithm are link allocations in all time steps.
CASCARA maintains a priority queue of links and the priority
of a link is decided based on two factors:

• Initial priority: all links have their initial priority set to
the number of free time slots they have in the current
billing cycle. We update the priority after augmenting the
link. In any subsequent billing timeslots, if the demand is
higher than Cf , links with lower priority i.e., ones which
were used in the previous slots are re-used again. This
ensures that the link augmentation is not spread across
many links.

• Link capacity: We prefer to augment lower capacity links
to save the higher capacity links for the remaining billing
cycle. If the demand is too high, high capacity links are
more likely to absorb it with augmentation.

We also kep track of the remaining free slots for each link.
When all links have exhausted their free slots, allocation in
that timestep fails and we have to increment Cf . Let O be the
order in which links got augmented. An example ordering of
augmented links, O is like so:

O = {[l1, l2, l3], [l1, l2, ], ..[lk, lk+1, lk+2,..]}
In timestamp 1, CASCARA augmented allocations to links

l1, l2 and l3. The starting priority of links is the same, so
the priority queue returns links in ascending order of their
capacity. In the next timeslot, CASCARA attempts to meet
the demand by augmenting the same set of links to keep
allocations stable.

CASCARA initializes Cf to the minimum value that pro-
duced a feasible traffic allocation for the previous month. If

Cf is too low for the current month’s demands, despite aug-
menting allocation to links, the traffic demand would not be
met and Cf will be incremented by b. The augmented link
ordering of an infeasible allocation would be like so:

Oun f easible = {[l1, l2..], ..., [lk, lk+1, .., lm]}

where Âm
k CAPACITY(li) demand �Cf .

Additionally, CASCARA has a provision to proactively in-
crement Cf by a (not shown in the algorithm). The goal is
to proactively perform an inevitable increase in Cf to avoid
wasting free slots of links. To do this, CASCARA checks if
the number of links with free slots remaining is proportional
to the amount of time left in the billing cycle. If the number
of burstable links are too few„ Cf is incremented proactively.

Algorithm 3: Online Traffic Allocation (long version)
Result: Allocation of demand d in every timestamp t
Input: L,n,k, f ,CAPACITY,C,a,b
Initialization:
freeslots = k

100 ⇤n
prio = freeslots . Initial priority of all links

linkq = PRIORITYQUEUE()
for link 2 L do

linkq.insert(link, CAPACITY(link), freeslots, prio)

Function allocate_timestep(d, f):
link_alloc = {}
augmented_links = []
Cf = f ⇤C . Fraction f of total capacity C
if d Cf then

link_alloc = bin_pack(L,Cf )
else

d = d �Cf
while d � 0 do

b_link = linkq.pop()
if !b_link then

return {}
augmented_links.add(b_link)
if b_link 2 L1 then

d = d � (1 - f)⇤ CAPACITY(b_link)
else

d = d � CAPACITY(b_link)
link_alloc [b_link]= CAPACITY(b_link)

for link 2 augmented_links do
link.prio = link.prio �1
link.free_slots = link.free_slots �1

return link_alloc
End Function
while not allocate_timestep(d, f ) do

f = f +d



A.3.1 Link utilization below the billable bandwidth

CASCARA chooses the target billable bandwidth (Cf ) for a
month. Given the billable bandwidth, it can be packed on to
links by greedily assigning traffic ot cheaper links. 4 Given
the minimum feasible Cf , this strategy is optimal. In fact,
utilizing any link below its 95th percentile utilization is uneco-
nomical – the link gets charged at the 95th percentile anyway.
Figure 13a shows that while the utilization in some billing
slots was below the 95th percentile (shaded red), yet, the link
was billed for 15% of its capacity, making the period of uti-
lization below 15%, wasteful.

(a) Link utilizations.
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Figure 13: (a) Utilization of a link as fraction of its capacity, sorted
from high to low across billing slots in a month. (b) 95th %-ile
and avg. of top 10% correlation.(c) Cost saving by CASCARA vs.
Pretium [20] on a month-by-month basis.

A.4 Details on the implementation of previous
systems

We implement the optimization formulation from previous
work using top 10% of utilizations in a month as the band-
width cost of a link. We use CVXPY’s implementation of
sum of largest decision variables for this purpose. Since this

4We have discussed the additional routing and client latency constraints
on CASCARA in §5.
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Figure 14: Average monthly bandwidth cost saving with CASCARA
as a function of the parameters a and b. We choose the best values
of a and b for the evaluation in §5.

formulation is a linear program, GUROBI solves it in less
than a minute. While fast to compute, the allocations from this
formulation are ineffective in saving the 95th percentile cost.
Figure 13c compares the cost savings per-month between our
solutions from Algorithm 1 and previous work. We note that
the cost saving from the sum of top-k formulation are modest,
11% on average for all instances. We believe this is because
of two assumptions made by previous work:

Assumption 1: 95th percentile of a link’s utilization is lin-
early correlated with the average of top k utilizations [20].
We evaluate this assumption using the utilizations of over
50 peering links in a cloud WAN. These links connect the
cloud WAN to large ISPs in N. America. We compute the
Pearson correlation coefficient to measure the extent to which
the average of top 10% utilizations can be used as a proxy for
95th percentile utilization of inter-domain links. We find that
the correlation coefficient for over 25% of the links is less
than 0.5. Since previous work’s hypothesis was derived from
the data of a single WAN link measured a few years ago, the
correlation between average of top 10% and 95th percentile
utilization may exist for some links but not all. Ever-changing
traffic patterns from WANs due to the advent of new services
like gaming also explain this difference.

Assumption 2: The correlation between average of top-k and
95th percentile of a link’s utilization holds even after a new
traffic allocation scheme replaces the current one. There is
no guarantee that assumptions about allocation distributions
hold in a newly proposed traffic engineering scheme. In fact,
traffic engineering schemes change the allocation of flow
along network links, modifying how links are utilized.

A.5 Selecting CASCARA’s hyperparameters
We sweep through potential values of a and b to find the ones
that fit CASCARA the best. The range of values for a and b
is [0,1] since they represent increments to fraction of total
network capacity. We sweep the space in steps of 0.01 to find
the parameters that lead to the highest cost savings in the
average case across all billing cycles (Figure 14).


